5.8 后续版本改进
5.8.1 可视化训练过程中的损失值
loss_list = [] # 用于保存loss值的列表
for epoch in range (train_epochs):
loss_sum = 0.0
for xs, ys in zip(x_data, y_data):
xs = xs.reshape(1,12)
ys = ys.reshape(1,1)
_, loss = sess.run([optimizer,loss_function], feed_dict={x: xs, y: ys})
loss_sum = loss_sum + loss
#loss_list.append(loss) # 每步添加一次
# 打乱数据顺序
x_data, y_data = shuffle(x_data, y_data)
b0temp=b.eval(session=sess)
w0temp=w.eval(session=sess)
loss_average = loss_sum/len(y_data)
loss_list.append(loss) # 每轮添加一次
print("epoch=", epoch+1,"loss=", loss_average,"b=", b0temp,"w=", w0temp )

5.8.2 TensorBoard可视化代码
Last updated
Was this helpful?